

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/curloo.html

Magnetic Field of a Current Loop

.1

In this special case t is such that the field of all the current ele the circumference ad at the center. The lin the length is just the of the circle.	IdL r dB he symmetry contribution ments aroun id directly e integral of circumferen	$B = \frac{\mu_0 I}{4\pi R^2} \oint dL = \frac{\mu_0 I}{4\pi R^2} 2\pi R = \frac{\mu_0 I}{2R}$ $\mu_0 = 4\pi x \ 10^{-7} T \cdot m / A$	Magnetic <u>field</u> concepts <u>Currents</u> <u>as</u> magnetic <u>sources</u>
For a current $I =$		_ Amperes and	
loop radius $\mathbf{R} =$		m, the magnetic field at the center of the loop is	
B =	Tesla =	Gauss.	
At a distance $z = \begin{bmatrix} m & m & m & m \\ magnetic & field & m \\ m & m & m \\ m & m & m \\ m & m & m$			
B =	Tesla =	Gauss.	
The current used in the calculation above is the total current, so for a coil of N turns, the current used is Ni where i is the current supplied to the coil.			
The Earth's magnetic field at the surface is about 0.5 Gauss.			
		Discussion of current loop	
HyperPhysics***** Electricity and Magnetism			Go Back

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/curloo.html

Magnetic Field of a Current Loop

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/curloo.html

25/12/2006

Magnetic Field of a Current Loop